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1 Introduction

Open bosonic string field theory has recently been used to study classical solutions of string

theory such as tachyon condensation that are difficult to analyze using first-quantized ap-

proaches. Some progress has been made in extending these techniques to open superstring

field theory, and there are presently three versions of open superstring field theory available.

The first version is based on the cubic action [1, 2]

S1 = 〈Y Ȳ (
1

2
V QV +

1

3
V ∗ V ∗ V )〉 (1.1)

where V is the Neveu-Schwarz (NS) string field of zero picture and +1 ghost-number in the

small Hilbert space, and Y Ȳ is an operator of −2 picture inserted at the string midpoint.

The second version is based on the Wess-Zumino-Witten-like action [3]

S2 = 〈(e−φQeφ)(e−φηeφ) +

∫ 1

0
dt{(e−tφQetφ) , (e−tφηetφ)}(e−tφ∂te

tφ)〉 (1.2)

where φ is the NS string field of zero picture and zero ghost-number in the large Hilbert

space. And the third version is based on the cubic action [4]

S3 = 〈Nρ

(
1

2
ΦQΦ +

1

3
Φ ∗ Φ ∗ Φ

)
〉 (1.3)

where Φ is a superstring field of +1 ghost-number in the GSO(+) sector using the non-

minimal pure spinor formalism, and Nρ = e−ρ{Q,χ} is a BRST-invariant regulator inserted

at the midpoint which depends on a constant parameter ρ.

Each of these three versions has advantages and disadvantages. The first version

of (1.1) has the advantage of being cubic, but has the disadvantage of being singular since

the midpoint insertion Y Ȳ is not invertible. So the linearized action Y Ȳ QV = 0 does not

imply QV = 0 unless one truncates out states in the kernel of Y Ȳ . [5]

The second version of (1.2) has the disadvantage of being non-polynomial, but has the

advantage of being non-singular since there are no midpoint insertions. So the linearized

equation of motion is ηQφ = 0, which implies QV = 0 where V ≡ ηφ is in the small

Hilbert space.

Finally, the third version of (1.3) has the advantage of being cubic and non-singular

since, unlike the operator Y Ȳ in (1.1), the operator Nρ has no kernel and is invertible. So
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the linearized equation of motion NρQΦ = 0 implies QΦ = 0. The disadvantage of the third

version is that Φ includes the GSO(+) NS and Ramond sectors of the superstring, but does

not include the GSO(−) NS sector and cannot be used to describe tachyon condensation.

In this paper, we shall propose a fourth version of open superstring field theory which

combines the advantages of the first and third versions and eliminates their disadvantages.

After adding a pair of non-minimal variables to the NS formalism, it will be possible to

replace the singular operator Y Ȳ of the first version with a non-singular invertible operator

Nρ depending on the non-minimal variables and on a constant parameter ρ. The action

will be

S4 = 〈Nρ

(
1

2
V QV +

1

3
V ∗ V ∗ V

)
〉 (1.4)

where V is a NS string field in the zero picture in the small Hilbert space which is allowed

to depend on the non-minimal variables.

2 Cubic open NS string field theory

In the absence of operators involving δ(γ), functional integration over the bosonic (β, γ)

ghost zero modes produces infinities in the NS tree amplitude. These delta functions can

be inserted in a BRST-invariant manner using the inverse picture-changing operator

Y = c∂ξe−2φ ≡ c
δ(γ)

γ
(2.1)

where we use the notation

γ = ηeφ, β = ∂ξe−φ, δ(γ) = e−φ,
δ(γ)

γ
= ∂ξe−2φ. (2.2)

Note that the OPE’s of eφ imply that δ(γ) = γ( δ(γ)
γ

). Since γ has two zero modes on a

disk, open string tree amplitudes require two inverse-picture-changing operators, and it is

convenient to insert the operator Y Ȳ at the midpoint interaction where Ȳ = c̄∂̄ξ̄e−2φ̄ is

constructed from the antiholomorphic ghosts.

Since Y Ȳ has a non-trivial kernel, e.g. Y Ȳ c = 0, it is clear that Y Ȳ is not invertible

unless one truncates out states from the Hilbert space. In order to replace Y Ȳ with an

invertible operator, the first step will be to write

Y Ȳ = 4

∫
dr

∫
dr̄

∫ ∞

−∞
du

∫ ∞

−∞
dū erc+r̄c̄+uγ2+ūγ̄2

(2.3)

where r and r̄ are fermionic variables and u and ū are bosonic variables. Note that

4

∫ ∞

−∞
dueuγ2

∫ ∞

−∞
dūeūγ̄2

= 4δ(γ2)δ(γ̄2) =
δ(γ)

|γ|

δ(γ̄)

|γ̄|
=
δ(γ)

γ

δ(γ̄)

γ̄
. (2.4)

The next step will be to treat (r, r̄) and (u, ū) as non-minimal worldsheet variables

with conjugate momenta (s, s̄) and (v, v̄) by adding them to the worldsheet action

S = SRNS +

∫
d2z(−s∂̄r − s̄∂r̄ + v∂̄u+ v̄∂ū) (2.5)

– 2 –



J
H
E
P
1
1
(
2
0
0
9
)
0
2
1

and to the BRST operator

Q = QRNS +

∫
dz vr +

∫
dz̄v̄r̄. (2.6)

Using the standard quartet argument, the additional terms in Q imply that physical states

in the cohomology of Q are independent of the non-minimal variables. It will also be

convenient to perform the similarity transformation

Q→ ec(s∂u+ 1

2
∂(su))+c̄(s̄∂̄ū+ 1

2
∂̄(s̄ū)) Q e−c(s∂u+ 1

2
∂(su))−c̄(s̄∂̄ū+ 1

2
∂̄(s̄ū)) (2.7)

= QRNS +

∫
dz

[
vr + c

(
1

2
∂(vu) + v∂u−

1

2
∂(sr) − s∂r

)
+ γ2

(
s∂u+

1

2
∂(su)

)]

+

∫
dz̄

[
v̄r̄ + c̄

(
1

2
∂̄(v̄ū) + v̄∂̄ū−

1

2
∂̄(s̄r̄) − s̄∂̄r̄

)
+ γ̄2

(
s̄∂̄ū+

1

2
∂̄(s̄ū)

)]

so that (u, v) and (r, s) each carry conformal weight (−1
2 ,

3
2).

The final step is to define

Nρ = eρ{Q,χ} = eρ[rc+r̄c̄+u(γ2+ 3

2
c∂c)+ū(γ̄2+ 3

2
c̄∂̄c̄)] (2.8)

where χ = uc + ūc̄, ρ is a nonzero constant, and we have used that χ has −3
2 conformal

weight to compute the uc∂c term in (2.8). Using a similar computation as in (2.3), it is

easy to check that

4

∫
dr

∫
dr̄

∫ ∞

−∞
du

∫ ∞

−∞
dūNρ = Y Ȳ (2.9)

where the ρ dependence cancels out and the uc∂c term in (2.8) does not contribute because

of the factor of cc̄ in Y Ȳ . Although the term in the exponential of (2.8) has zero picture,

the right-hand side of (2.9) has picture −2 after integration over u and ū.

As in the regulator used in the non-minimal pure spinor formalism [4], on-shell am-

plitudes cannot depend on ρ since Nρ = 1 + QΩ for some Ω. Although the amplitude is

singular when ρ = 0, it is regularized at any non-zero value of ρ. And NρQV = 0 implies

QV = 0 since (2.8) is easily inverted to (Nρ)
−1 = e−ρ{Q,χ}.

To define a cubic open NS string field theory using Nρ, one needs to allow the string

field V to depend both on the original NS worldsheet variables (xm, ψm; b, c, β, γ) and on

the new non-minimal variables (r, s, u, v). Note that bosonization is unnecessary since

both V and Nρ can be expressed in terms of (β, γ) and (β̄, γ̄). The cubic string field theory

action is

S = 〈Nρ

(
1

2
V QV +

1

3
V ∗ V ∗ V

)
〉 (2.10)

where 〈. . .〉 is defined as usual by functional integration over all the worldsheet variables.

Since u and r have two zero modes on the disk, their zero mode integration reproduces

the operator of −2 picture in (2.9). So if one writes V = V0 + Ṽ where V0 is independent

of the non-minimal variables, (2.9) implies that the terms in S which are independent of Ṽ

are the same as in the original cubic action of (1.1). However, the terms in S which depend

on Ṽ are necessary for guaranteeing that the linearized equation of motion is equivalent to

QV = 0.

– 3 –
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To see how Ṽ contributes to the action, note that rescaling

u→
u

ρ
, r →

r

ρ
, ū→

ū

ρ
, r̄ →

r̄

ρ
, (2.11)

v → vρ, s→ sρ, v̄ → v̄ρ, s̄→ s̄ρ̄, (2.12)

removes the ρ dependence from Nρ and leaves invariant the worldsheet action and BRST

operator. After this rescaling, the string field depends on ρ as

V =
∞∑

n=−∞

ρ−nVn (2.13)

where n counts the number of non-minimal fields in Vn, i.e.

[

∫
dz(uv + rs) +

∫
dz̄(ūv̄ + r̄s̄) , Vn] = nVn. (2.14)

Note that for string fields of finite conformal weight, n is bounded from below since

(v, s, v̄, s̄) carry positive conformal weight.

Using (2.13), the action of (2.10) can be expressed as S =
∑∞

n=−∞ Snρ
−n where

Sn = 〈Nρ=1

(
1

2

∞∑

m=−∞

Vn−mQVm +
1

3

∞∑

m,p=−∞

Vn−m−p ∗ Vm ∗ Vp

)
〉. (2.15)

As in the cubic action of (1.3) using the pure spinor formalism, (2.15) involves an infinite

chain of auxiliary fields Vn depending on the non-minimal variables. Since the non-minimal

variables include bosons, (2.13) and (2.15) resemble the construction of superfields and

actions in harmonic superspace. It should be noted that, unlike the non-minimal variables

in the pure spinor formalism which all carry non-negative conformal weight, the non-

minimal variables u and r carry −1
2 conformal weight. So Vn for n > 0 involves states of

negative conformal weight which could complicate computations using level truncation.

A related difficulty that has recently been discussed by Kroyter in [6] is caused by the

nonzero conformal weight of χ = uc+ ūc̄. Since the map of the cubic vertex to the disk is

singular at the midpoint, any midpoint operator of nonzero conformal weight will induce

a singularity in evaluating correlation functions on the disk. Fortunately, this problem

appears to have been resolved in [6] by introducing a second quartet of non-minimal fields,

(ũ, ṽ, r̃, s̃) which all have conformal dimension 1
2 , and suitably modifying the BRST operator

to include these new non-minimal fields. The operator χ = uc+ ūc̄ can then be replaced by

χ̃ = (ũ)3uc+ (˜̄u)3ūc̄ which now carries zero conformal weight. Since the new non-minimal

fields have no zero modes on the disk and decouple from the cohomology, it is trivial to

integrate them out. And since the midpoint operator now carries zero conformal weight,

there are no longer singularities in correlation functions on the disk.

Another possible difficulty, which is also a difficulty with all the other cubic superstring

field theory actions, is gauge-fixing. Since the midpoint insertion of Nρ (like the insertion

of Y Ȳ ) involves the c ghost, fixing the b0 = 0 gauge may be subtle. One could try to

implement alternative gauge choices such as Schnabl gauge or the gauge choices of [1], but
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these also have subtleties. Note that in the cubic action using the pure spinor formalism,

there are difficulties with gauge-fixing because of the (λλ̂) poles in the b ghost [4]. The only

action that appears to be free of gauge-fixing difficulties is the Wess-Zumino-Witten-like

action of (1.2) where one can easily choose the gauge-fixing conditions b0 = ξ0 = 0 as in [7].

It would be interesting to extend the action of this paper to include the Ramond

sector. Although one can describe the GSO(+) Ramond sector using the pure spinor

version of (1.3), there is no non-singular action which can covariantly describe both the

GSO(+) and GSO(−) Ramond and NS sectors. It is intriguing that the non-minimal

worldsheet fields (u, v, r, s) introduced here have the same statistics and conformal weights

as the non-minimal worldsheet fields (γ̃, β̃, ξ, µ) which were used in [8] to allow a more

symmetric treatment of the NS and Ramond sectors.
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